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ABSTRACT 

In this paper we extend the work of Chandy and Reynolds in which 
they considered the problem of scheduling tasks on two identical processors. 
The processing times of the tasks are independent, identically distributed 
exponential random variables The tasks are subject to in-tree precedence con- 
straints. Chandy and Reynolds have shown that the expected value of the 
makespadlatest finishing-time) is minimkd if and only if the scheduling pol- 
icy is Highest-Level-First(HLF). We extend their result by showing that a 
policy maximizes the probability that all tasks finish by some time t 30 if 
and only if the policy is HLF. Additionally, we show that a policy maximizes 
the probability that the sum of the finishing times of all the tasks is less than 
some value s > 0 if and only if the policy is HLF. 

1. Introduction 

Ln this paper we extend the work of Chandy and ReynoldCR! in which they considered the 
problem of scheduling tasks on two identical processors. The processing times of the tasks are 
mdependent, identically drstnbuted exponential ranaom variabies. Tue -miis aie suLv@ci G k- 
tree precedence constraints. Chandy and Reynolds have shown that the expected value of the 
makespan(1atest finishing-time) is minimiled if and only if the scheduling policy is Highest- 
Level-First(HLF1. We extend their result by showing that other criteria are also optimized by 
the HLF policy. In particular we show that a policy maximizes the probability that all tasks 
finish by some time t > 0 if and only if the policy is HLF. Additionally, we show that a pol- 
icy maximizes the probability that the sum of the finishing times of all the tasks is less than 
some value s > 0 if and only if the policy is HLF. 
Ln the next section we introduce definitions and notation used throughout the paper. Follow- 
ing this we give a precise formulation of the criteria for optimality and subsequently we state 
the main results. All proofs appear in the Appendix. 

2. Definitions and Notation 

A scheduling problem consists of a set of tasks, precedence constraints among the tasks, and 
service-time requirement, 7 ,  for each task. In this paper we shall consider the service-time 
requirements of the tasks to be independent, identically distributed random variables with 
distribution function P .(t ) = l-e . Below we introduce some graph-theoretic definitions 
which are useful for describing the precedence constraints among the tasks. 
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A directed gr@ G , k give9 by 
1. 

2. 
3. 

V , a finite set of tasks(vertices), 
E , a finite set of edges, and 
A relation o f  incidence which associates with each edge e in E an ordered pair of tasks 
(K ,v ). The tasks u and v called the endpoints of e and u (v ) is called the immediate 
predecessor(successor) of v (u 1. 

The notation G (V ,E denotes the directed p p h  G with task set V and edge set E . V (G 
and E (V ) denote the task set and edge set of the directed graph G , respectively. 
Let G ( V J ? )  be a directed graph. A task is called inirid(final) if it has no immediate 
predecessodsu-rs). Let I (G denote the set of initial tasks of G . A direcfed path of 
length k is a sequence of k 3 1 tasks v l,v . . , v, where vi is an immediate predecessor of 
v, if there is a 
directed path beginning at u and ending at v in G . We say that G is acyclic if there is no 
directed path in G with repeated tasks. If G is acyclic then we define X(v , the level of the 
task v , to be the length of the longest path from v to a final task. The graph formed from G 
by removing the task v belonging to G is denoted by G l v  and consists of the tasks in 
V - {v  1, the edges e EE such that both endpoints of e are in V -{v }, and the relation of 
incidence which is the restriction of the relation of incidence in G to the edges and tasks of 
G l v  . G is called an in-tree if it is acyclic and each task has at most one immediate successor. 
An instance of a scheduling problem is given by an in-tree G . As was mentioned above, each 
task of G has an associated service requirement 7. The service requirements of all tasks are 
independent, identically distributed random variables with distribution function 
F ,(t = l-e -clz where p > 0. We assume that there are 2 identical processors and the pro- 
cessing constraint is that a processor may not be assigned to a task until all of its predecessors 
have completed their processing. 
A p o k y ,  n, is a mapping from in-trees into subsets of tasks satisfying: 
1. d G  is a subset of I (G ), and 
2. 
A policy is called highest-level-first (HLF) if v E ~ G  then X(v 12 X(u for all 
u €1 (G b d G  1. 
Given a scheduling problem G and a policy n, a schedule is determined by assigning the pro- 
cessors to the tasks determined by the policy n at decision points. The decision poinfs consist 
of time zero and subsequent task completion times. Ar rime z r o  the p i m a i s  Ziie a i g ~ d  to 
the tasks in d G  1. The next decision point occurs at the first completion of a task in dG 1. If 
d G  contains two tasks the distribution function of the time to the first completion is 
F .(2t = l-e -2w and if d G  ) contains one task the distribution function of the completion 
time is F .(t ). Suppose task a E ~ G  ) is the first to finish. We now assign the processors to 
the tasks in d G / a  and the time to the next decision point is the time to the first completion 
of a task in d G l a  ). This process continues until all the tasks in G have been processed. 
Notice that preemptions are allowed. 

for i =l-k -1. Task u (v ) is called a predecessor(successor) of task v (u 

if I I (G ) I t  < 2  then dG = I (G ) otherwise I d G  1 I = 2. 

3. Optimization Criteria 

Let G be a scheduling problem, n a policy, and t 2 0. We define MZ(t  to be the probabWy 
that all tasks in G complete their processing by time t given that scheduling begins at time 
zero and the policy v is used throughour. We can write M z ( t  as follows: 
a) If G has no tasks (i-e. V and E are both empty) then 

M?(t ) = 1.  

' I s I denotes the numba of elements in the set S . 
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b) E G h?s txzctlg nne initial task ( dG ) = {Q )) then 

M f ( t  = pjo'(l-F T(x >)Mgo  ( f  --x )dx . 
C) If G has two or more initial tasks (dG = {Q  ,b 1) then 

M c ( t  = 2pjoZ(1-F T(2-x )xzMt';a 1 (t --x + s M z / b  1 (t --x ))dx * 

Case a) is obvious. Case b) expresses M c ( t  in terms of the probability that Q finishes at time 
x and the probability of the remaining tasks finishing within time t --x . In a similar manner, 
case c) expresses M;(r in terms of the probability that the first finish occurs at time x and 
the probability of the remaining tasks finishing within time t -x .  There arc two equally 
likely cases either task Q or task b finishes first. 

We shall consider a second optimhtion criterion. Let G be a scheduling problem, w a policy, 
and s 2 0. We define W& to be the probability r h t  the sum of the finishing times of (111 
tasks in G is no grearer thun s given that scheduling begins ar time zero curd the policy w is 
used throughow. We can write WZ(s as follows 
a) If G has no tasks (i&. V and E are both empty.) then 

W f ( s  1 = 1 . 
b) If G has exactly one initial task ( d G  = { Q  )> then 

r l  n 

WZ(S = p jo (1-F T(x ))w&o (s -nx )dx 9 

where n = I V (G )I. 
If G has two or more initial tasks (dG > = {Q ,b )) then 

s l n  1 1 
c> 

W z ( s  = 21.1 Jo (1-F .(2x >xyW&,, (s -nx + yw&b (s --nx ))dx , 

where n = I V (G ) I .  
Case a) is obvious. Case b) expresses W& ) in terms of the probability that a finishes at time 
x and the probability that the sum of the finishing times of the remaining tasks is not greater 
than s -nx . The idea is that by time x the finishing times of all n tasks are at least x and 
so we can reduce the original problem to the subproblem Gla with s reduced by nx . Case C> 
1s slmiiar to case b) e x i q t  that there zrp, ty.rc tqmlly likely subcases to consider. . .  

4. Optimality Equations 

For i = 1,2 we define the operator Li which maps the set of continuous functions on [ O , d  
into itself. Let g be a continuous function of t  on [o,oo). 
Let 

t 
[Li g Xt 1 = i p Jo (I-F .(in >>g (t -n )dx 

Let G be an instance of a scheduling problem. Below we give a set of equations, called the 
optimdity equations, which determine MG , the optimal value for the makespan criterion. 
These equations are policy-independent and thus express the best we can hope to achieve 
under any circumstances. The optimality equations for MG are: 
a) I f G  isemptythen 

MG = 1 .  

b) If G has exactly one initial task, a, then 
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- -  M, = 1. ;-&?,;e 

c> If G has two or more initial tasks then 

A policy T is called a M e s p a n  optimal policy if M z ( t  ) = MG (t  ) for all G and t 3 0. 

We next present the optimality equations for the sum-of-finishing-times criterion. For 
i = 12 and n 2 0  we de5ne the operator K: which maps the set of continuous functions on 
[o,oo> into itself. 
Let 

and 

Below we give the optimaUty equatiotrJ which determine W G ,  the optimal value for the 
sum-of-finishing-times criterion. As before, these equations are policy-independent and thus 
express the best we can hope to achieve. The optimality equations for WG are: 
a> I f G  isempty then 

wc; = l .  

b) If G has exactly one initial task, a, and I V (G I = R +1 then 
W G  = K1Wcla . 

c> I f G  hastwoormoreinitialtasksand IV(G)I = n + l r h e n  . 

A policy 7~ is called a mm-of-finishing-times optimclr policy if W,"(s 1 = WG (s 
and 5 >O. 

for all G 

5. MainResults 

In this section we state the main results of this paper. 

Theorem 1. A policy w is makespan optimal if and only if it is HLF. 
Proof: See Appendix. 
Theorem 2 A policy 7r is sum-of-finishing-time optimal if an only if it is HLF. 
Proof: The proof of Theorem 2 follows the same pattern as the proof on Theorem 1 and is not 
given. See the Appendix for the proof of Theorem 1. 

The pattern of the proof of Theorem 1 suggests that HLF is optimal with respect to a wide 
variety of criteria. Specifically, the proof uses the fact that the operator Li is monotone. The 
inductive proof of Theorem A given in the Appendix will work for any monotone operator as 
long as certain special cases can be proved. The special cases consist of those where either H 
or G have exactly one initial task. In these cases we have used a sample-path analysis which 
works because of the simple structure of an in-tree with one initial task. 
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Th,e p d i d e s  we have defined are rather simple and do not depend on scheduling history. 
Becaue of &e memoryless property of the exponential distribution, nothing is gained by going 
to a more complex class of policies. 
It is known that HLF is not optimal for more than two processodCR]. An out-tree is an acy- 
clic directed graph in which each task has at most one immediate predecessor. For two or more 
machines, independent. identically distributed exponential service times and out-tree pre- 
cedence constraints there are no known results. This is rather surprising, but true. It is 
tempting to try an consider these problems from a complexity point-of-view. The reader is 
referred to a recent paper by Christos Papadimitriou, which was inspired by an attempt to 
classify the complexity of these scheduling probledPa]. In contrast. the situatian for the 
deterministic version of these problems reasonably well understoc~$Br]. 

6. References 

[Br] Bruno, J. "Deterministic and Stochastic Scheduling Problems with Treelike Precedence 
Constraints." in D e t d n i s t i c  and Stmhastic Scheduling eds. Dempster. MAAH, et. al, 
D. Reidel Publishing Co, 1982, pp 367-374. 

[CR] Chandy, ICM, and Reynolds, P.F, "Scheduling Partially Ordered Tasks with Exponen- 
tially Distributed Times," Department of Computer Sciences, University of Texas at Aus- 
tin 

[Pa] Papadimitriou, C. H, "Games Against Nature," 24th Symposium on the Foundations of  
Cornper Science, Nov 1983, pp 446-450 

Appendix 

In this appendix we give the proofs of the main results of this paper. These proofs are close to 
the ones given by Chandy and Reynolds[CR] for the case of expected makespan optimization. 
To begin with we define three relations over in-trees which were originally introduced in 
[CRI. 

Let G (V ,E be an in-tree. Let Nj be equal to the number of tasks v EV such that X(v = i . 
Using Nj we define S (G ,i as 

S ( G $ ) =  NE . 
E ai 

Let G and Ii be two in-trees We define three relations, B , - , and Q , on pairs of in- 
trees as follows: 
1. If S (G JY )<S ( H  $ ) for all i >, 1 then we write G S H . 
2. If S (G JY )=S ( H  $ for all i 3 1 then we write G - H  . 
3. I f G  B H and thereexistsani such that S ( G  , i ) < H ( G  $) then  we write G 4 H .  
The above definitions compare in-trees in terms of the total number of nodes a t  and above each 
level. I t  turns out that the "flatter" the in-tree the better it is for maximizing M and W . 

Lemma 1 Let G be an in-tree and a ,b 6 1  (G 1. If X(a )B X(b then G/a Q G/b . If 
h(a >> X(b then G/a Q G/b . If X(a )=A@ then G/a - G/b . 
Proof: &e [CR]. 

Lemma 2 let G and H be an in-trees, a 1~ $1 (G 1, and b 1,b $1 (a 1. 
If 

a and A(a A(a 2)& X(a for all a e l  (G )-(a 2) and 
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b l#b and X(b 1)2 A(b 33 X(b for a l l  b €1 (H )-{b lb 21 
then 

G 3 €2 imp lie^ G/u 1% H / b  1 and G/u 2s Ii/b a 
G Q H implies G/u ,Q H/b or G/a 2 4  H/b or both, 
G - H implies G/Q - Hlb I and G/a 2 - H/b 2 .  

Proof: See [a]. 

The next theorem relates the values of the solution to the optimality equations for the mak- 
espan to the relations on in-trees defined above. 
Theorem A Let G and H be in-trees. Then 
a) G - H  implies MG =Ma , 
b) G s H  impliesM, > M H ,  

Proof: The proof is by induction on I V ( H  I, the number of tasks in a. Notice that in all 
three cases a, b, and c that IV (GI I < IV ( H I  I. 

The theorem is trivially true in this: case. 
Induction Step: Assume that I V ( H  I >O and that the theorem is true for in-trees with 
fewer tasks than H . 
Part a) We must show that G - H implies MG =Mu. 
We break this part of the proof down into two cases. one in which H has exactly one initial 
task and one in which H has two or more initial tasks. 
Case 1: H has exactly one initial task, say a . 
By hypothesis and the properties of - and in-trees, G is isomorphic to H .  Therefore 

Case 2: H has two or more initial tasks. 
By the d e h t i o n  of - , G also has two or more initial tasks. By the definition of MG we 
have 

C> G G H  i m p l i e s M G > M n .  

Basis: I v (€2 1 I =o. 

MG =MH. 

maX ( L  2 M G I a  4- L 2 M G I b  - 

We have from Lemma 1 that if A(a )a A(b) then G/a 4 G l b .  By induction we have 
MGJ, b M G I b  (We have invoked part b of the theorem with G/Q playing the role of G and 
Glb playing the role of H .). Since is L is monotone, ( L  MGla + L 2 MGIb is maximized 
by choosing Q and b with the highest possible levels. Therefore, 

1 
MG = -  

2 a *  
a ,b r l  (G I 

(1) 1 
MG = y ( L 2 M G l a 1 + L 2 M G I a 2 ) *  

where a 1p $1 (G ), Q la and X(u 1)> A(u 3 h ( u  ) for all a € I  (G &{a 2) .  It should be 
clear that the choice of a and Q is not necessarily unique since any other initial tasks at the 
same levels would serve. 
Similarly, we have 

(2) 1 
MH = 7 (L2 M H ! b l  L2 M H l b #  * 

where b l b f i I ( H ) ,  b2fb2and A(b1)2A(b2)h(b)forall b 6 1 ( G b { b I b 2 ) .  
By lemma 2 we have that G - H implies that G/a - H / b  and G/a 2- H/b 
the induction hypothesis that 

It follows from 
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MGla  = M H l b  

and 

MGla = M H / b  * 

Combining these results with equatim (1) and (2) we get that MG = M H ,  the desired 
result. 

, 

Pzrt b) We must show that G Q H implies MG B M H  . 
We break this part of the proof down into 4 cases depending on whether the in-trees have one 
or more than one initial task. 
Case 1: H and G both have at least two initial tasks. 
It is easy to see that equations (1) and (2) hold in this case. By lemma 2 we have that G Q H 
implies that G/a ,6 H / b  and G/Q p H / b  2. It follows from the induction hypothesis that 

MGla M H l b  

and 

Combining this with equations (1) and (2) and by using the monotonicity of the operator L 2 ,  

we get MG 3 M H  . 
Case 2 H has one initial task and G has at least two initial tasks. 
We use a samplepath analysis for this case. Clearly, I V (G ) I < I V ( H  ) I and H is a path. 
Consider a policy for G which atsigns the two processors to u ,b €1 (G ) at t = 0 and after 
the first finish uses only one of the processors thereafter. Let Y denote the latest completion 
time of the tasks in G under this policy. Also, let 7,  denote the processing time of task u . 
We can write the random variable Y as follows, 

Y = 7, - d n ( r a , T b ) .  
u r V ( G )  

Since H has one initial task, we will only have use for one processor. Let 2 be the latest 
completion time of the tasks in H . We can write Z as follows, 

z =  7 , .  
Y r V ( H  ) 

Let c$ be a 1-1 mapping of the tasks of G onto a subset of the tasks of H . Using c$ we have, 

z = 7 & , ) + *  
u r V ( G  1 

where *>O. Combining expressionS for Y and 2 we get 

Clearly Pr (2 6 t ) = M H  (t  ). The optimality equations for MG determine an optimal pol- 
icy so clearly Pr {Y < t ) < MG (t ). Using (3) we get 

M G  (r 13 Pr {Y < t ) > Pr { Z  < t ) = MH (t ) . 
Case 3: H has at least two initial tasks and G has one inital task. 
There is only one policy for G . However €2 contains a path that is at least as long as G . 
Therefore, form a sample-path point of view, H will always take at least as long as G . 
CASE 4 61 and G both have one initial task. 
%Y - 
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, 

Part c) We must show that G Q H implies MG > MH . 
'l'he proof is similar to Part bj. 
End of Proof 

- 

We now are in a position to prove Theorem 1 of section 5. 
Proof of Theorem I: To show that a HLF policy n is makespan optimal we must show that 
MG" = MG for all in-trees G . In addition, if we want to show that only the HLF policies 
are makespan optimal. then we will also have to show that if T is not HLF then there exists 
an in-tree G such that MG"< MG . 
The proof is by induction on I V (G I for the first part, namely that if n is HLF then 7r is a 
makespan optimal policy. 
Basis : I V (G I =O. The policy T is clearly optimal. 
Induction Step : I V (G 
fewer tasks than G . If G has only one initial task then all policies are identical. Therefore 
we can assume that G has at  least two initial tasks. Suppose n(G ) = { u  ,v ). Then we can 
write 

I > 0 and we assume that n is makespan optimal for all in-trees with ' 

1 
(L 2MG7u + L f i G 7 v  * MG" = - 

2 
By induction we get 

(4) 1 MG"= - ( L  a G l u  + a G I v  ) 2 
From Theorem A we can write(& equation (111, 

(5) 1 
M G  = 7 (L  a G l o  + L 2MGIb 

where a #b and X(a )> X(b >> X(c for all c E I  (G )-{a ,b ). 
Clearly the choice of a and b is HLF but not necessarily the same as u and v . However, if 
A(u )2 X(v then X(Q >= X(u ) and X(b )= h(v >. By lemma 1 we have Gla -Glu and 
Glb -Glv  . Therefore using Theorem A part a we have that Mclo = M G / ~  and 
M G I ,  = M,,, . Consequently, MG = MGr. 

To complete the proof let T be a nonHLF policy. Let G be the smallest in-tree such that 
d G  is not an HLF assignment. Therefore if d G  ) = { u  ,v 1, then there exists a 
c €1 (G j-iu ,v j such that either h(c I> Ab j or A<c j> A<v j. Equation (4) siiii holds since 
G has been chosen to be as small as possible and equation (5 )  holds. Assume X(c >> X(u 1. 
Then we can replace the term MGlu in equation (4) with the term making the right- 
hand-side(rhs) of (4) strictly larger. This follows from lemma 1 ( X(c >> X(u ) implies 
Glc C Glu and Theorem A, part c (G/c C Glu implies Mclc > M G I ~  1. We continue replac- 
ing terms on the rhs of (4) until it matches the rhs of (5). This process can be carried out 
without ever decreasing the rhs of (4). From this we conclude that MG"< MG . 
End of Proof 

The proof of Theorem 2 follows the same pattern as the proof of Theorem 1 and consequently 
will be omitted. 
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